HCM 2010 Multimodal LOS Methodology

Broward Metropolitan Planning Organization

September 25, 2012

Overview

- What's New for HCM 2010?
- Brief history of HCM multimodal analysis
- Development of the HCM methodology
 - Pedestrian LOS model
 - Bicycle LOS model
 - Transit LOS model
- FDOT Q/LOS versus HCM 2010
- Complete Streets and General Plan Case Studies
- Traffic Impact and Sensitivity Case Studies
- Q&A

HCM 2010 Course | Urban Street Concepts: Pedestrian, Bicycle, and Transit Modes

What's New for HCM 2010? (The 2010 Highway Capacity Manual)

Volume 1 – Concepts

Volume 2 – Uninterrupted Flow Facilities

Freeways, rural highways, rural roads

Volume 3 – Interrupted Flow Facilities

- Urban arterials, intersections, roundabouts
- Signals at freeway interchanges,
- Bicycle and Pedestrian trails

Volume 4 – Supplemental Materials (Website)

What's New for HCM 2010?

Guidance on How to Apply the HCM

- How and when to use microsimulation
- Interpretation and presentation of results
- New Freeway Weaving Method
- New Chapter on Active Traffic Management
- New Arterial Street Method
 - Multimodal Level of Service
 - New Roundabout Method

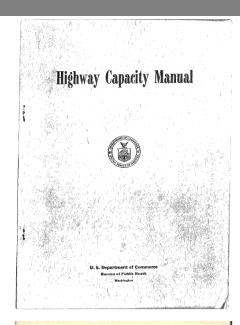
What's New for HCM 2010? (HCM 2010 Urban Street Analysis)

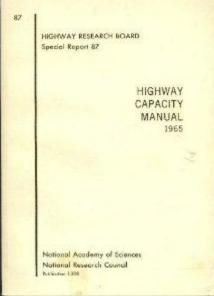
- Predict Stops, Speed, Queues
- Models signal coordination
 - force offs, yields
- Mixed street: signal, stops, roundabout
- Sensitive to access management
 - driveways, median breaks
- Service Volume Table

HCM 2010 Overview & Multimodal Level of Service

Overview

- What's New for HCM 2010?
- Brief history of HCM multimodal analysis
- Development of the HCM methodology
 - Pedestrian LOS model
 - Bicycle LOS model
 - Transit LOS model
- FDOT Q/LOS versus HCM 2010
- Complete Streets and General Plan Case Studies
- Traffic Impact and Sensitivity Case Studies
- Q&A

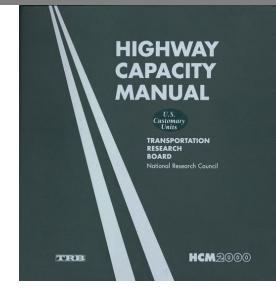

HCM 2010 Course | Urban Street Concepts: Pedestrian, Bicycle, and Transit Modes


1950 HCM

- Streetcars and buses impact motorized vehicle capacity at traffic signals
- Pedestrian impacts on motorized vehicle capacity addressed indirectly

• 1965 HCM

- LOS concept introduced
- Short (11-page) chapter on bus transit


■ 1985 HCM

- Greatly expanded transit chapter
 - LOS measures based on the probability of a queue of buses forming at a bus stop, passenger loads
- New pedestrian chapter
 - LOS for sidewalks and street corners based on pedestrian space
- New 4-page bicycle chapter

 Focused mainly on bicycle impacts on motorized vehicle capacity

- HCM 2000

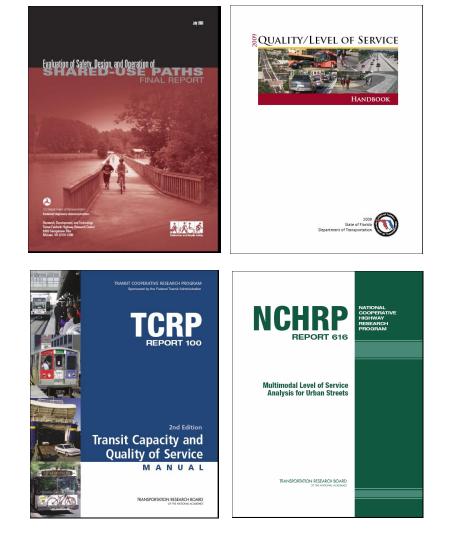
- Transit chapter an abridgement of the then-new Transit Capacity & Quality of Service Manual
 - LOS measures for frequency, hours of service, passenger load, reliability
- Expanded pedestrian chapter
 - Methods for additional facility types
 - LOS based on pedestrian space, speed, delay
- Expanded bicycle chapter
 - LOS based on bicycle speed, delay, hindrance

HCM 2000 focus group findings

- Many jurisdictions didn't require multimodal analyses
 Therefore, they weren't performed
- Jurisdictions that did want to perform pedestrian & bicycle analyses didn't find the HCM 2000 measures useful
 - For example, Maryland & Florida used measures of user comfort
- Most pedestrian and bicycle facilities don't have capacity or speed issues
 - No need to analyze them using HCM procedures

Issues with HCM 2000 alternative mode measures:

- Pedestrian and bicycle LOS measures reflected a traffic engineer's perspective
- Transit measures reflected a traveler's perspective, but 4 LOS measures created issues with results interpretation

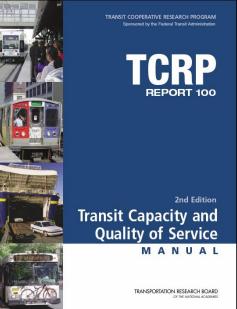

HCM 2000: Ped LOS A

HCM 2000: Ped LOS D

Multimodal Research Since HCM 2000

- Shared-use path LOS (FHWA, 2006)
- Florida Quality/Level of Service Handbook (FDOT, 2002 & 2009)
- Transit Capacity & Quality of Service Manual, 2nd Edition (TCRP Report 100, 2003)
- Urban street multimodal LOS (NCHRP Report 616, 2008)

HCM 2010 Multimodal Philosophy


 Integrate multimodal analysis methods into the appropriate HCM methodological chapters wherever possible

- Alternative mode material is presented side-by-side with auto mode material to encourage greater consideration of alternative modes by analysts
- Encourage software developers to add multimodal analysis features
- No separate bike, ped, transit chapters

HCM 2010 Multimodal Philosophy

Refer readers to the *Transit Capacity* & *Quality of Service Manual* (TCQSM) for most transit operational analysis methods

- Difficult to keep the HCM & TCQSM in synch
- HCM still presents transit material used for a multimodal analysis of an urban street

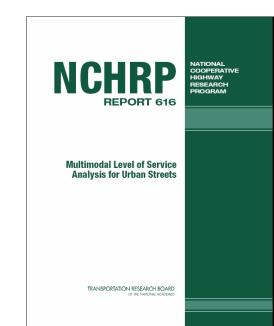
HCM 2010 Overview & Multimodal Level of Service

HCM 2010 Multimodal Philosophy

Allow trade-offs in the use of the right-of-way by different modes to be evaluated

	Impacting Mode			
Mode Affected	Auto	Ped	Bike	Transit
Auto	Auto & HV volumes Turning patterns Lane configurations	Minimum green time Turn conflicts Mid-block xings	Turn conflicts Passing delay	Heavy vehicle Blocking delay: stops Signal priority
Ped	Auto & HV volumes Signal cycle length Driver yielding Turn conflicts Traffic separation	Sidewalk crowding Crosswalk crowding Cross-flows	Shared-path conflicts Bicyclist yielding	Heavy vehicle Transit stop queues Bus stop cross-flows Vehicle yielding
Bike	Auto & HV volumes Auto & HV speed On-street parking Turn conflicts Traffic separation	Shared-path conflicts Min. green time Turn conflicts Mid-block xings	Bike volumes	Heavy vehicle Blocking delay: stops Tracks
Transit	Auto volumes Signal timing	Ped. env. quality Minimum green time Turn conflicts Mid-block xings	Bike environment quality Bike volumes	Bus volumes

Overview


- What's New for HCM 2010?
- Brief history of HCM multimodal analysis
- Development of the HCM methodology
 - Pedestrian LOS model
 - Bicycle LOS model
 - Transit LOS model
- FDOT Q/LOS versus HCM 2010
- Complete Streets and General Plan Case Studies
- Traffic Impact and Sensitivity Case Studies
- Q&A

HCM 2010 Course | Urban Street Concepts: Pedestrian, Bicycle, and Transit Modes

Methodology Selection

NCHRP Report 616 method used in HCM 2010

- Designed specifically for the HCM
- LOS measures based on traveler perceptions
- Modal LOS scores can be directly compared to each other and reflect average traveler satisfaction by mode
- Model developed and tested based on national conditions

Methodology Development

Pedestrian, bicycle, auto modes:

- 90 typical street segments recorded
- Video labs in four cities around the U.S.
- 120 Participants rated conditions on a A–F scale

HCM 2010 Overview & Multimodal Level of Service

Methodology Development

Transit mode:

- Video lab not a feasible
- On-board surveys conducted in 4 cities
 - However, results were biased capturing only transit passengers
- Final model was based on national traveler response data to changes in transit service quality
 - For example, when service frequency or travel time is improved, ridership increases

- All models generate an perception score that is generally in the range of 1–6
- All models have multiple service quality factors as inputs
 - Traditional HCM service measures are based on a single factor (e.g., delay)

LOS thresholds are the same across models

LOS Score Interpretation

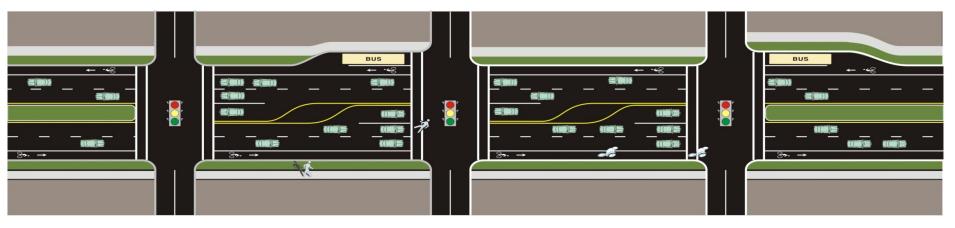
LOS	LOS Score
Α	≤2.00
В	>2.00-2.75
С	>2.75-3.50
D	>3.50-4.25
E	>4.25-5.00
F	>5.00

 Auto LOS is based on *travel speed as a* percentage of base free-flow speed instead of on the auto perception score

LOS Score Interpretation

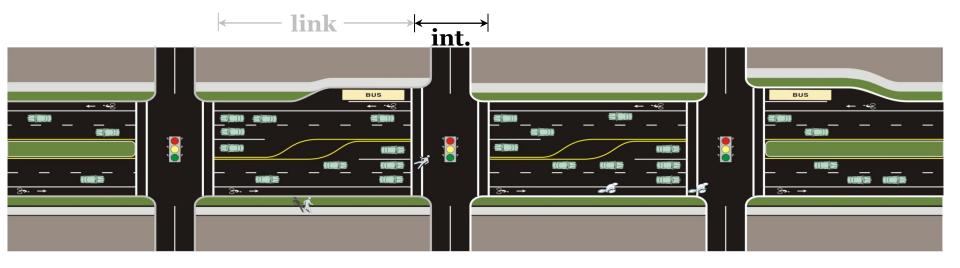
- LOS is reported individually by mode and direction
- No combined LOS for the street
 - Auto volumes would typically dominate an LOS weighted by number of travelers
 - Combined LOS would potentially mask important deficiencies for a given mode
- Measures the degree to which urban streets meet the need of all users

Treatment of Safety in Multimodal LOS


HCM 2010 does not explicitly include safety in LOS calculations.

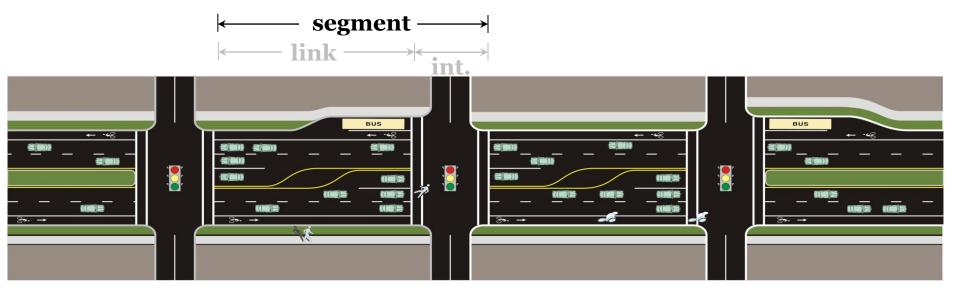
- Crash history does not affect LOS
- However, HCM 2010 does include safety implicitly.
 - Traveler Perceived Safety
 - Speed of traffic, percent heavy vehicles, barriers between sidewalk and street, lateral separation between vehicle stream and bicyclists and pedestrians.

Urban Street System Elements: Link


Distance between two signalized intersections

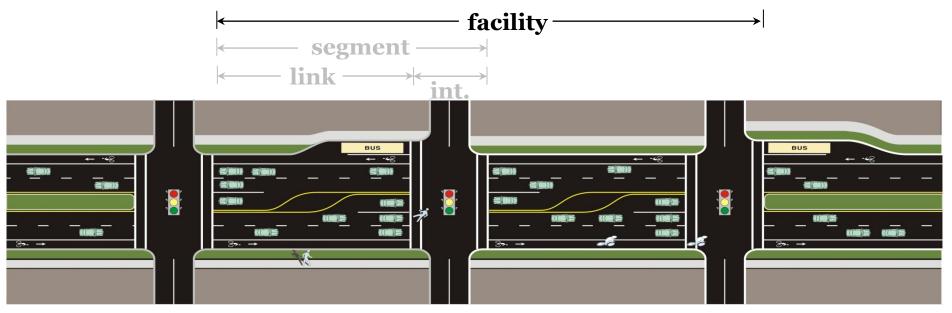
Roundabout or all-way STOP could also be an end point

Perception score for bike, ped modes


Urban Street System Elements: Intersection

- Signalized intersection, roundabout, or allway STOP that terminates a link
- Intersection scores only for ped/bike modes

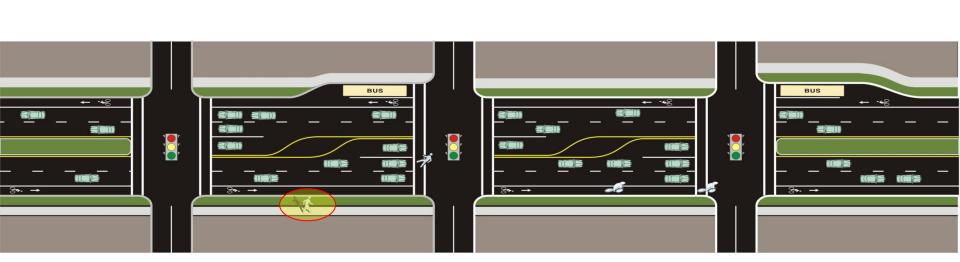
Urban Street System Elements: Segment



- Segment = link + downstream intersection
- Perception scores available for all modes
 - Ped & bike scores based on combination of link, intersection, and additional factor

HCM 2010 Overview & Multimodal Level of Service

Urban Street System Elements: Facility


- Facility = 2 or more consecutive segments
- Perception scores available for all modes
 - Length-weighted average of the segment scores

Overview

- What's New for HCM 2010?
- Brief history of HCM multimodal analysis
- Development of the HCM methodology
 - Pedestrian LOS model
 - Bicycle LOS model
 - Transit LOS model
- FDOT Q/LOS versus HCM 2010
- Complete Streets and General Plan Case Studies
- Traffic Impact and Sensitivity Case Studies
- Q&A

HCM 2010 Course | Urban Street Concepts: Pedestrian, Bicycle, and Transit Modes

Pedestrian LOS: Links

HCM 2010 Overview & Multimodal Level of Service

Pedestrian LOS: Links Model Factors

Ń

Factors included:

- Outside travel lane width (+)
- Bicycle lane/shoulder width (+)
- Buffer presence (e.g., on-street parking, street trees) (+)
- Sidewalk presence and width (+)
- Volume and speed of motor vehicle traffic in outside travel lane (–)

Pedestrian density considered separately

 Worse of (density LOS, link LOS score) used in determining overall link LOS

Pedestrian LOS: Links Model Form

 $I_{p,link} = 6.0468 + F_v + F_S + F_w$

Ped Link LOS **Score**

Constant

Vehicle Vehicle Cross-Volume

Speed Section **Factor**

Mid-segment demand flow rate (veh/h)

$$F_v = 0.0091 \frac{v_m}{4 N_{th}}$$

Number of through lanes in direction of travel

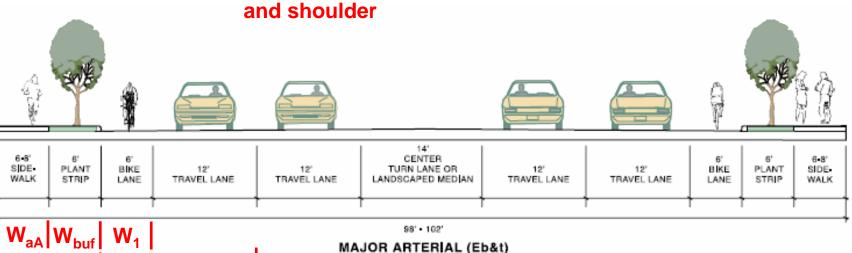
$$F_s = 4 \left(\frac{S_R}{100}\right)^2$$

Motorized vehicle running speed (mi/h) [from auto model]

Pedestrian LOS: Links Model Form

$$F_{w} = -1.2276 \ln(W_{v} + 0.5 W_{1} + 50 p_{pk} + W_{buf} f_{b} + W_{aA} f_{sw})$$

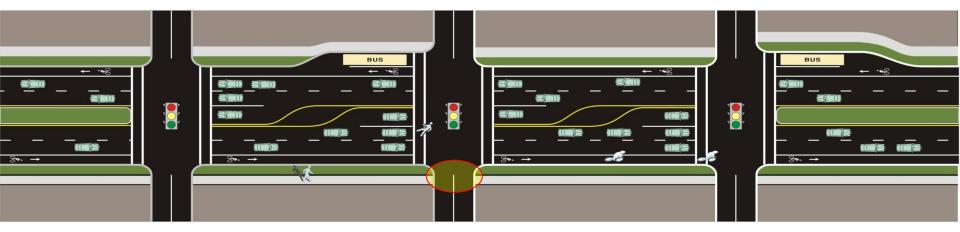
Constant $W_v = effective total$ width of outside through lane, bike lane, and shoulder


> W₁ = effective total width of bike lane and shoulder

% occupied $F_b = 1.00$ on-street (no barrier) parking $F_b = 5.37$

(barrier)

 $F_{b} = 1.00 \quad f_{sw} = 6.0 - 0.3W_{aA}$ no barrier) $W_{aA} = min(W_{A}, 10)$


ft)

HCM 2010 Overview & Multimodal Level of Service

W..

Pedestrian LOS: Signalized Intersections

HCM 2010 Overview & Multimodal Level of Service

Pedestrian LOS: Signalized Intersections Model Factors

- Permitted left turn and right-turn-on-red volumes (–)
- Cross-street motor vehicle volumes and speeds (–)
- Crossing length (–)
- Average pedestrian delay (–)
- Right-turn channelizing island presence (+)

Pedestrian LOS: Signalized Intersections Model Form

$$I_{p,int} = 0.5997 + F_w + F_s + F_{delay} + F_v$$

Ped Intersection Constant LOS Score Cross-SpeedPedestrianVolumeSectionFactorDelayFactorFactorFactorFactor[from auto model]

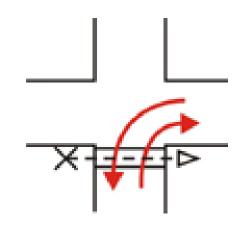
$$F_w = 0.681 \left(N_d \right)^{0.514}$$

Number of traffic lanes crossed

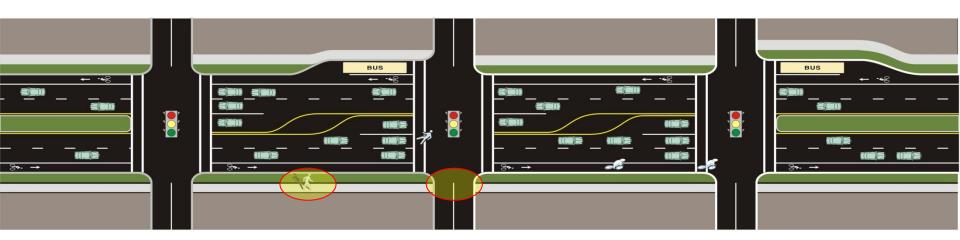
 $F_{S} = 0.00013 \ n_{15,mi} \ S_{85,mi}$ Minor street traffic volume (veh/ln/15 min) speed (mi/h)

HCM 2010 Overview & Multimodal Level of Service

Pedestrian LOS: Signalized Intersections Model Form


$$F_v = 0.00569$$

$$\left(\frac{v_{rtor} + v_{lt,perm}}{4}\right)$$


Conflicting traffic flow over crosswalk (veh/h) Number of right-turn channelizing islands along crossing

Traffic volume of street being crossed (veh/ln/15 min)

 $-N_{rtci,d} (0.0027 \ n_{15,mj} - 0.1946)$

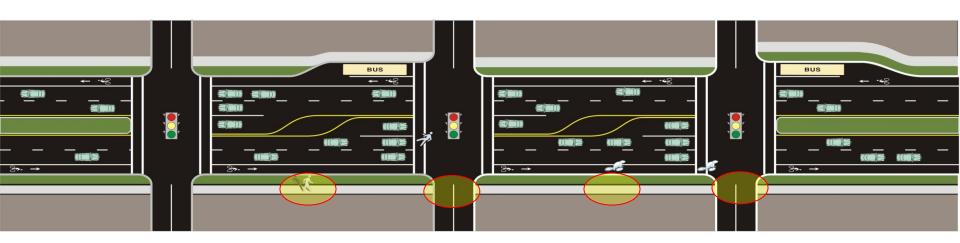
Pedestrian LOS: Segments

Pedestrian LOS: Segments Model Factors

Factors included:

- Pedestrian link LOS (+)
- Pedestrian intersection LOS (+)
- Street-crossing difficulty (–/+)
 - Delay diverting to signalized crossing
 - Delay crossing street at legal unsignalized location

Pedestrian LOS: Segments Model Form


$$I_{p,seg} = F_{cd} \left(0.318 \ I_{p,link} + 0.220 \ I_{p,int} + 1.606 \right)$$

Ped Segment LOS Score Ped Link LOS Score Ped Intersection Constant LOS Score

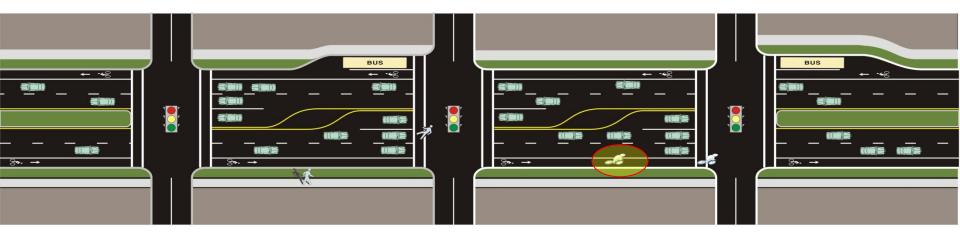
Minimum of diversion time & unsignalized crossing delay time

$$F_{cd} = 1.0 + \frac{0.10 \, d_{px} - (0.318 \, I_{p,link} + 0.220 \, I_{p,int} + 1.606)}{7.5}$$

Pedestrian LOS: Facility

Length-weighted average of segment LOS scores

- Can mask deficiencies in individual segments
- Consider also reporting segment LOS score for the worst segment in the facility


Overview

- What's New for HCM 2010?
- Brief history of HCM multimodal analysis
- Development of the HCM methodology
 - Pedestrian LOS model
 - Bicycle LOS model
 - Transit LOS model
- FDOT Q/LOS versus HCM 2010
- Complete Streets and General Plan Case Studies
- Traffic Impact and Sensitivity Case Studies
- Q&A

HCM 2010 Course | Urban Street Concepts: Pedestrian, Bicycle, and Transit Modes

Bicycle LOS: Links

Bicycle LOS: Links Model Factors

Factors included:

- Volume and speed of traffic in outside travel lane (-)
- Heavy vehicle percentage (–)
- Pavement condition (+)
- Bicycle lane presence (+)
- Bicycle lane, shoulder, and outside lane widths (+)
- On-street parking utilization (–)

Bicycle LOS: Links Model Form

$$I_{b,link} = 0.760 + F_v + F_S + F_p + F_w$$

Constant

Bike Link LOS Score VolumeSpeedPavementCross-FactorFactorConditionSectionFactorFactorFactor

 $F_p = \frac{7.066}{P_c^2}$

Pavement condition rating (1–5) Adjusted midblock vehicle flow rate (veh/h)

$$F_v = 0.507 \ln \left(\frac{v_{ma}}{4 N_{th}}\right)$$

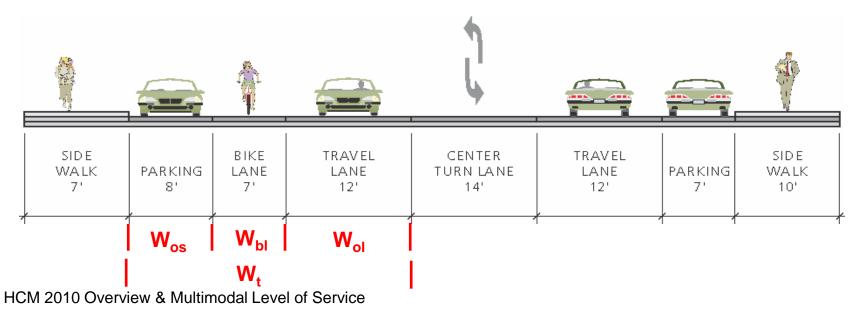
Number of through lanes in travel direction

$$F_{S} = 0.199 \left[1.1199 \ln(S_{Ra} - 20) + 0.8103 \right] \left(1 + 0.1038 P_{HVa} \right)^{2}$$

Vehicle running speed (>= 21 mi/h)

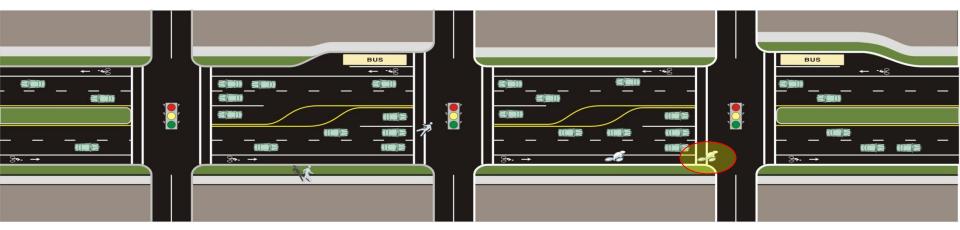
Adjusted percent heavy vehicles

Bicycle LOS: Links Model Form


$$F_w = -0.005 W_e^2$$

Effective width of outside through lane

Condition	Variable When Condition Is Satisfied	Variable When Condition Is Not Satisfied
$p_{\rho k} = 0.0$	$W_t = W_{ol} + W_{bl} + W_{os}^*$	$W_t = W_{ol} + W_{bl}$
$v_m > 160$ veh/h or street is divided	$W_{\nu} = W_t$	$W_v = W_t (2 - 0.005 v_m)$
$W_{bl} + W_{os}^* < 4.0 \text{ ft}$	$W_e = W_v - 10 p_{pk} \ge 0.0$	$W_e = W_v + W_{bl} + W_{os}^* - 20 p_{pk} \ge 0.0$


W_{os} = width of paved outside shoulder

 W_{os}^{*} = adjusted width of paved outside shoulder (same as ped link LOS)

Bicycle LOS: Signalized Intersections

Bicycle LOS: Signalized Intersections Model Factors

Factors included:

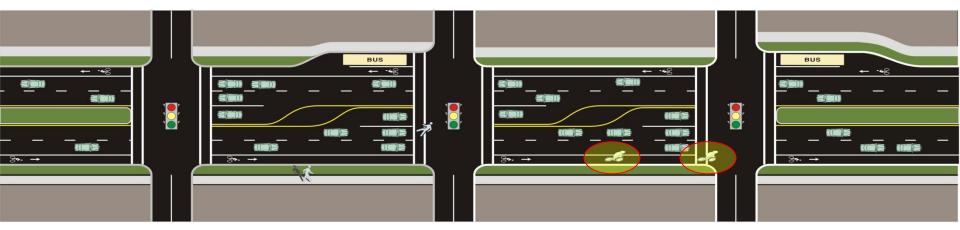
- Width of outside through lane and bicycle lane (+)
- Cross-street width (–)
- Motor vehicle traffic volume in the outside lane (–)

Bicycle LOS: Signalized Intersections Model Form

$$I_{b,int} = 4.1324 + F_w + F_v$$

BikeConstantCross-VehicleIntersectionSectionVolumeLOS ScoreFactorFactor

Motorized traffic volume in travel direction


$$F_{w} = 0.0153 W_{cd} - 0.2144 W_{t} \qquad F_{v} = 0.0066 \frac{v_{lt} + v_{th} + v_{rt}}{4 N_{th}}$$

Curb-to-curb cross-street width Total width of outside lane, bike lane, paved shoulder

Number of through lanes in travel direction

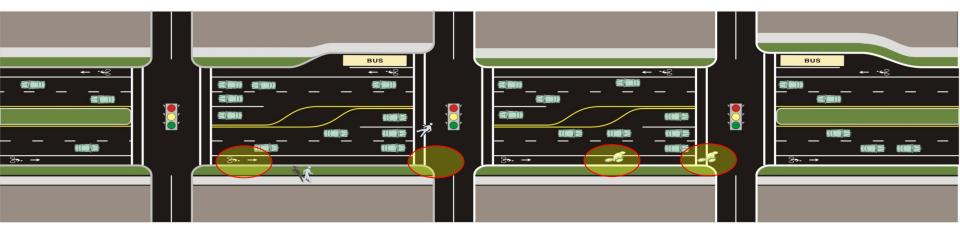
Bicycle LOS: Segments

Bicycle LOS: Segments Model Factors

Factors included:

- Bicycle link LOS (+)
- Bicycle intersection LOS, if signalized (+)
- Number of access points on right side (–)
 - Includes driveways and unsignalized street intersections
 - Judgment required on how low-volume residential driveways are treated

Bicycle LOS: Segments Model Form


Number of access points on right side

$$I_{b,seg} = 0.160 I_{b,link} + 0.011 F_{bi} e^{I_{b,int}} + 0.035 \frac{N_{ap,s}}{(L/5280)} + 2.85$$

Bicycle LOS: Facility

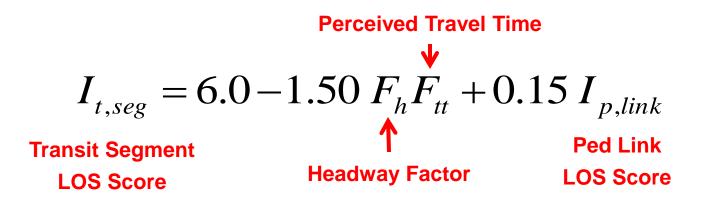
Length-weighted average of segment LOS scores

- Can mask deficiencies in individual segments
- Consider also reporting segment LOS score for the worst segment in the facility

Overview

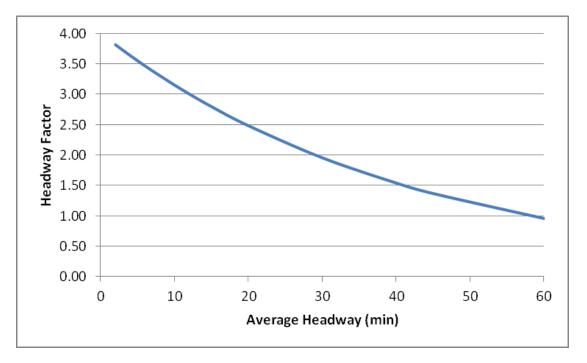
- What's New for HCM 2010?
- Brief history of HCM multimodal analysis
- Development of the HCM methodology
 - Pedestrian LOS model
 - Bicycle LOS model
 - Transit LOS model
- FDOT Q/LOS versus HCM 2010
- Complete Streets and General Plan Case Studies
- Traffic Impact and Sensitivity Case Studies
- Q&A

HCM 2010 Course | Urban Street Concepts: Pedestrian, Bicycle, and Transit Modes


Transit LOS: Overview

- Only segment and facility LOS models
- Transit facility LOS is a length-weighted average of segment LOS
- "Transit" includes buses, streetcars, and street-running light rail
- Three main model components:
 - Access to transit (pedestrian link LOS)
 - Wait for transit (frequency)
 - Riding transit (perceived travel time rate)

Transit LOS: Segment Model Form


Transit LOS: Headway Factor

$$F_h = 4.00 \ e^{-1.434/(v_s + 0.001)}$$

Headway factor

Number of transit vehicles serving segment per hour

Factors included:

- Actual bus travel speed (+)
- Bus stop amenities (+)
- Excess wait time due to late bus/train arrival (-)
- On-board crowding (–)
- Default value of time data and average passenger trip lengths used to convert actual times into perceived times
 - For example, the trip seems to take longer when one has to stand

Transit LOS: Perceived Travel Time Factor

$$F_{tt} = \frac{(e-1) T_{btt} - (e+1) T_{ptt}}{(e-1) T_{ptt} - (e+1) T_{btt}}$$

e = ridership elasticity with respect to travel time changes, default value = -0.4

T_{btt} = base travel time rate (4.0 or 6.0 min/mi)

T_{ptt} = perceived travel time rate

Transit LOS: Perceived Travel Time Rate

Perceived travel time rate (min/mi)

$$T_{ptt} = \left(a_1 \frac{60}{S_{Tt,seg}}\right) + \left(2 T_{ex}\right) - T_{at} \quad \text{trans}$$

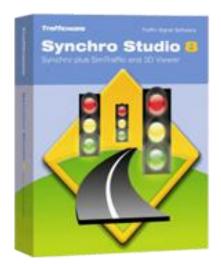
Perceived ravel time rate due to stop amenities

Crowding Actual Perceived perception travel travel time factor time rate rate due to late arrivals

$$a_{1} = \begin{cases} 1.00 & \text{Load factor (p/seat)} <= 0.80 \\ 1 + \frac{(4)(F_{l} - 0.80)}{4.2} & 0.80 < \text{Load factor } <= 1.00 \\ 1 + \frac{(4)(F_{l} - 0.80) + (F_{l} - 1.00)(6.5 + [(5)(F_{l} - 1.00)])}{4.2 \times F_{l}} & \text{Load factor } > 1.00 \end{cases}$$

Analysis Software for MMLOS

- HCS 2010
- CompleteStreetsLOS
- ARTPLAN
- SYNCHRO


Florida Department of Transportation

ARTPLAN 2009

Multimodal Arterial Level of Service Analysis

for Conceptual Planning and Preliminary Engineering

Overview

- What's New for HCM 2010?
- Brief history of HCM multimodal analysis
- Development of the HCM methodology
 - Pedestrian LOS model
 - Bicycle LOS model
 - Transit LOS model
- FDOT Q/LOS versus HCM 2010
- Complete Streets and General Plan Case Studies
- Traffic Impact and Sensitivity Case Studies
- Q&A

HCM 2010 Course | Urban Street Concepts: Pedestrian, Bicycle, and Transit Modes

Comparing HCM 2010 with FDOT Q/LOS Methodologies

Level-of-Service Analysis Similarities

Quality of service from traveler's perspective

- Perceived safety
- Comfort
- Convenience

Directional

Can combine for overall LOS

Result is a numerical score

- Convert to a LOS
- Link level formulas

Score Letter Grade Thresholds (Bicycle / Pedestrian)

LOS	Score (FDOT Q/LOS)	Score (HCM 2010)
A	<= 1.50	<= 2.00
В	> 1.50 and <= 2.50	> 2.00 and <= 2.75
С	> 2.50 and <= 3.50	> 2.75 and <= 3.50
D	> 3.50 and <= 4.50	> 3.50 and <= 4.25
E	> 4.50 and <= 5.50	> 4.25 and <= 5.00
F	> 5.50	> 5.00

Different limits for all levels

Bicycle / Pedestrian Level-of-Service

FDOT Q/LOS calculates LOS for:

- Link (Street section between signalized intersections)
- Facility (Multiple adjacent links)

HCM 2010 calculates LOS for:

- Link (Street section between signalized intersections)
- Signalized intersection
- Segment (One link and one downstream signalized intersection)
- Facility (Multiple adjacent segments)

Bicycle LOS

Link LOS

Parameters and formulas are the same

Signalized Intersection and Segment LOS

- Only in HCM 2010
- Segment LOS accounts for the presence of access points along the corridor

Pedestrian LOS

Link LOS

- Variables are the same
- Equations slightly different
 - Greater emphasis on shoulder, bike lane, and onstreet parking (HCM 2010)
- Density consideration in HCM 2010

Signalized Intersection and Segment LOS

- Only in HCM 2010
- Segment LOS considers the difficulty in crossing the analysis street.

Score Letter Grade Thresholds (Transit)

LOS	Adjusted Service Frequency - Vehicles/Hour (FDOT Q/LOS)	Score (HCM 2010)
А	>6.00	<= 2.00
В	>4.00 and <= 6.00	> 2.00 and <= 2.75
С	3.00 to 4.00	> 2.75 and <= 3.50
D	2.00 to 2.99	> 3.50 and <= 4.25
E	1.00 to 1.99	> 4.25 and <= 5.00
F	<1.00	> 5.00

• Numerical scores not directly comparable

Transit Level-of-Service

Parameters:

FDOT Q/LOS	HCM 2010
Service Frequency (+)	Service Frequency (+)
Pedestrian LOS (+/-)	Pedestrian LOS (-)
Roadway crossing (+/-)	Average bus speed (+/-)
Obstacles between stop and sidewalk (-)	Bus reliability (+/-)
Span of service (+/-)	Passenger load (-)
	Bus stop amenities (+)

 Service frequency is the most important factor in both

Transit Level-of-Service

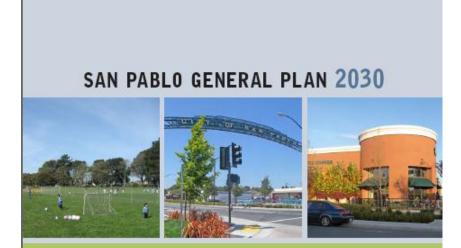
Calculate scores differently

- Adjusted service frequency (FDOT Q/LOS)
- Numerical score from equation (HCM 2010)

Pedestrian LOS has different effects

- FDOT Q/LOS
 - Can increase or decrease adjusted average frequency (0.55 – 1.15 factor range)
- HCM 2010
 - Only increases numerical score (worsens LOS)
 - Transit LOS Score = 6.0 1.50 * Transit Wait Ride Score + 0.15 * Ped LOS

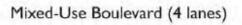
Overview

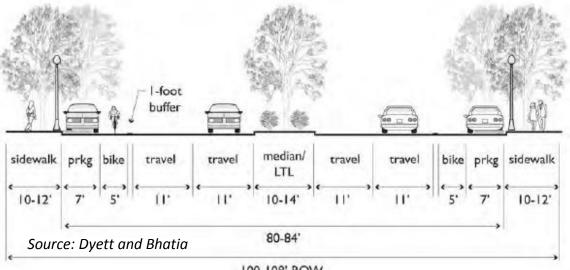

- What's New for HCM 2010?
- Brief history of HCM multimodal analysis
- Development of the HCM methodology
 - Pedestrian LOS model
 - Bicycle LOS model
 - Transit LOS model
- FDOT Q/LOS versus HCM 2010
- Complete Streets and General Plan Case Studies
- Traffic Impact and Sensitivity Case Studies
- Q&A

HCM 2010 Course | Urban Street Concepts: Pedestrian, Bicycle, and Transit Modes

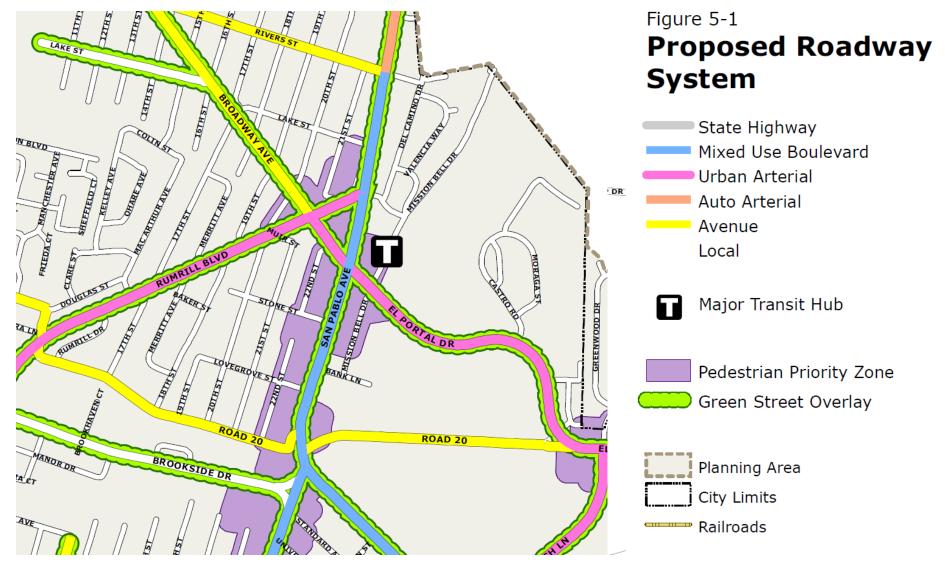
Case Study General Plan

- Adopted 2011
- Dyett and Bhatia –
 Prime consultant
- How to incorporate MMLOS




Volume 1: General Plan Policies Adopted April 2011

"Building San Pablo's Tomorrow - Today"


- Complete Street general policies
- Designation of circulation system
 - Move away from motorist-only perceptions
 - Incorporate more multimodal designations

100-108' ROW

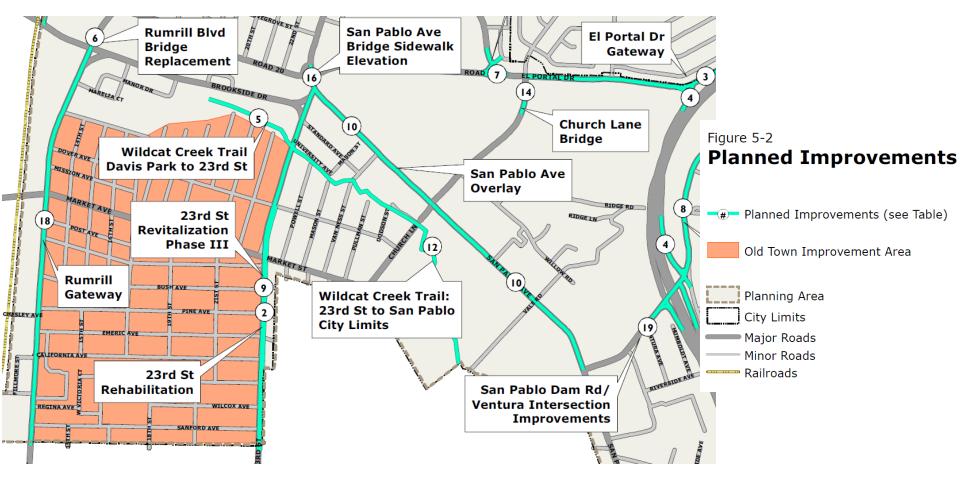

Prioritization of different street types by mode

Table 5.2-1 Transportation Fa	cilities Matrix				
Facility	Transit	Bicycles	Pedestrians	Trucks	Automobiles
State Highway		×	x		
Auto Arterial			0		•
Urban Arterial		•		0	•
Mixed Used Boulevard	•		•		
Avenue	0			0	
Local	0			х	
= Dominant					
Accommodated					
O = Incidental					
X = Prohibited					

¹ Transit has priority over bicycles on Urban Arterials, where conflicts exist.

More robust determination of improvements

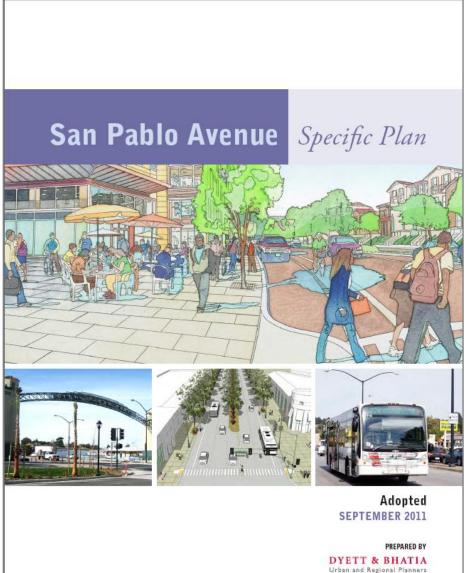

MMLOS summary of factors for each mode

	Table 5.2-4 Definition of Multi-modal Level of Service Indicators										
LOS	Transit	Bicycle	Pedestrian								
A	(Good walk access to bus stops, frequent service, good bus stop amenities.)	(Few driveway and cross street conflicts, good pavement condition, ample width of outside lane, including parking and bike lanes.)	(Low traffic volumes, wide buffer separating sidewalk from traffic, numerous street trees, and high parking occupancy.)								
В											
С											
D	ĻĻ	ے لے	ے لے								
Е	\sim	\sim	\sim								
F	(Poor walk access to bus stops, infrequent service, poor schedule adherence, no bus stop amenities.)	(Poor pavement condition, narrow width of outside lane, frequent driveways and cross streets.)	(High traffic volumes, limited buffer separating sidewalk from traffic, few street trees, low parking occupancy.)								

Source: Dowling Associates, 2010.

Case Study Specific Plan

- Adopted 2011
- Guide to revitalize in a sustainable manner
- MMLOS analysis
 - Existing
 - 2030 No Project
 - 2030 Specific Plan

• MMLOS Analysis

				AN	Л Реа	k-Hou	r						
			Northbound						Southbound				
		Tra	nsit					Transit					
Corridor		Passe	enger	Bicy	clist	Pedes	strian	Passe	nger	Bicy	clist	Pedes	strian
Section	Scenario	Score	LOS	Score	LOS	Score	LOS	Score	LOS	Score	LOS	Score	LOS
North	Existing	1.67	А	3.45	С	2.98	С	1.65	А	3.55	D	3.07	С
	2030 No Project	2.11	В	3.49	С	3.08	С	1.78	А	3.61	D	3.19	С
	2030 Specific Plan	2.07	В	3.18	С	2.84	С	1.76	А	3.29	С	3.04	С
Central	Existing	1.08	А	3.50	С	3.06	С	1.10	А	3.49	С	2.96	С
	2030 No Project	1.22	А	3.54	D	3.15	С	1.27	А	3.55	D	3.07	С
	2030 Specific Plan	1.20	А	3.48	С	3.03	С	1.23	А	2.95	С	2.83	С
South	Existing	0.91	А	4.13	D	2.87	С	0.80	А	3.60	D	2.83	С
	2030 No Project	1.07	А	4.22	D	2.99	С	1.06	А	3.65	D	2.96	С
	2030 Specific Plan	1.04	А	3.69	D	2.81	С	1.05	А	3.57	D	2.85	С
Dowling As	ssociates, Inc., Multi-Mo	odal Leve	l of Serv	vice analy	vsis usin	g Compl	eteStree	etsLOS ve	rsion 2.	1.8, Nove	ember 2	010	
Legend													
	Worse than existing												
	Worse than existing	but bet	ter thar	n 2030 M	lo Proj	ect							
	Better than existing												

• MMLOS Analysis

	PM Peak-Hour												
				North	bound			Southbound					
		Tra	nsit					Transit					
Corridor		Passe	nger	Bicy	clist	Pedes	strian	Passe	enger	Bicy	clist	Pedes	strian
Section	Scenario	Score	LOS	Score	LOS	Score	LOS	Score	LOS	Score	LOS	Score	LOS
North	Existing	1.71	А	3.61	D	3.26	С	1.64	А	3.53	D	3.03	С
	2030 No Project	1.79	А	3.70	D	3.43	С	2.08	В	3.63	D	3.23	С
	2030 Specific Plan	1.76	А	3.35	С	3.20	С	2.05	В	3.30	С	3.08	С
Central	Existing	1.10	А	3.57	D	3.20	С	1.08	А	3.44	С	2.84	С
	2030 No Project	1.14	А	3.70	D	3.47	С	2.50	В	3.50	С	3.06	С
	2030 Specific Plan	1.12	А	3.62	D	3.35	С	2.46	В	2.90	С	2.82	С
South	Existing	0.95	А	4.36	E	3.10	С	0.79	А	3.58	D	2.76	С
	2030 No Project	0.99	А	4.78	Е	3.37	С	1.30	А	3.69	D	2.99	С
	2030 Specific Plan	0.96	А	3.90	D	3.21	С	1.29	А	3.60	D	2.89	С
Dowling As	ssociates, Inc., Multi-Mo	odal Leve	l of Serv	vice analy	sis usin	g Compl	eteStree	etsLOS ve	rsion 2.	1.8, Nove	mber 2	010	
Legend													
	Worse than existing												
	Worse than existing but better than 2030 No Project												
	Better than existing												

Case Study General and Specific Plan

Benefits of MMLOS

- Provided baseline LOS for all travel modes
 - Reasonableness of LOS standards
- Tested MMLOS for Specific Plan scenario
- Multimodal roadway designations
 - Provides guidelines for improvements
 - Informs mitigation requirements
 - Provides an analysis tool

Case Study General and Specific Plan

Lessons Learned

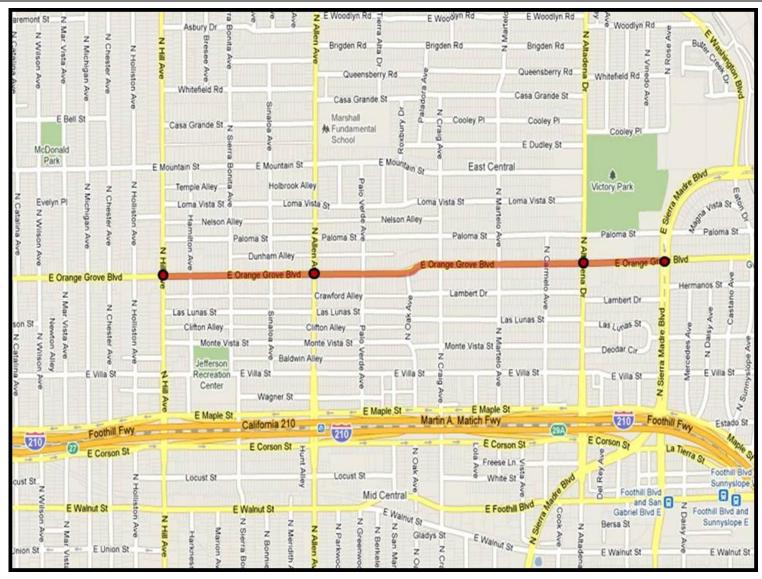
- MMLOS works well analyzing fixed right-of-way
 - How to allocate space
 - Quantifies trade-offs between modes
- Developing policy standards
 - Establish baseline
 - Conduct sketch what-if scenarios
 - May lead to prioritizing specific modes on streets

Overview

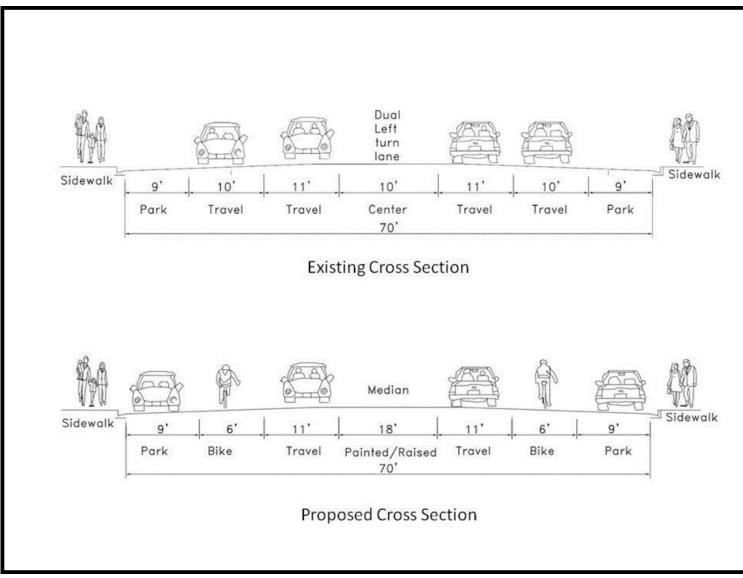
- What's New for HCM 2010?
- Brief history of HCM multimodal analysis
- Development of the HCM methodology
 - Pedestrian LOS model
 - Bicycle LOS model
 - Transit LOS model
- FDOT Q/LOS versus HCM 2010
- Complete Streets and General Plan Case Studies
- Traffic Impact and Sensitivity Case Studies
- Q&A

HCM 2010 Course | Urban Street Concepts: Pedestrian, Bicycle, and Transit Modes

Traffic Impact and Sensitivity Case Studies


Worked with the City of Pasadena to analyze multimodal impacts of two projects

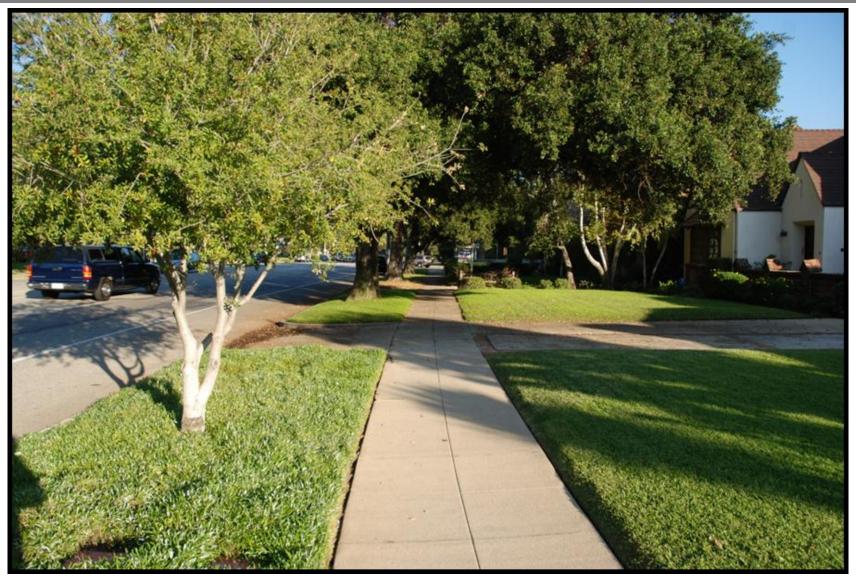
- 1. Road Diet Evaluation
- 2. Development Impact Analysis


When implementing a road diet, many concerns arise including:

- How will the lane reduction affect the auto mode?
- Will transit operations be affected?
- How much will the bicycle mode improve as a result of adding bike lanes?
- Will there be any benefit to pedestrians?

Orange Grove Blvd. was analyzed using multimodal LOS to address these concerns

11,200 ADT 1.6 Miles



Issues with Current Cross Section

- No facilities for bicyclists
- Light traffic volumes for a large right-of-way (ROW) roadway
- Higher speeds and wider crossing width which detract from a neighborhood feel

The Result:

- Analysis showed that the road diet will result in minor changes to the transit and auto mode
- The pedestrian and bicycle modes will improve between 9% and 20% if the road diet is implemented on this corridor

		Orange Gr	ove Boulevard - Faci	ility PM	
	Mode	Existing Road Diet Score (LOS) Score (LOS)		Difference	% Change
	Auto	2.33 (B)	2.57 (B)	0.24	10.3%
B	Transit	3.23 (C)	3.19 (C)	-0.04	-1.2%
ш	Bicycle	3.44 (C)	2.73 (B)	-0.71	-20.6%
	Pedestrian	2.89 (C)	2.63 (B)	-0.26	-9.0%
	Auto	2.32 (B)	2.45 (B)	0.13	5.6%
WB	Transit	3.09 (C)	3.05 (C)	-0.04	-1.3%
3	Bicycle	3.33 (C)	2.66 (B)	-0.67	-20.1%
	Pedestrian	2.84 (C)	2.58 (B)	-0.26	-9.2%

Transit

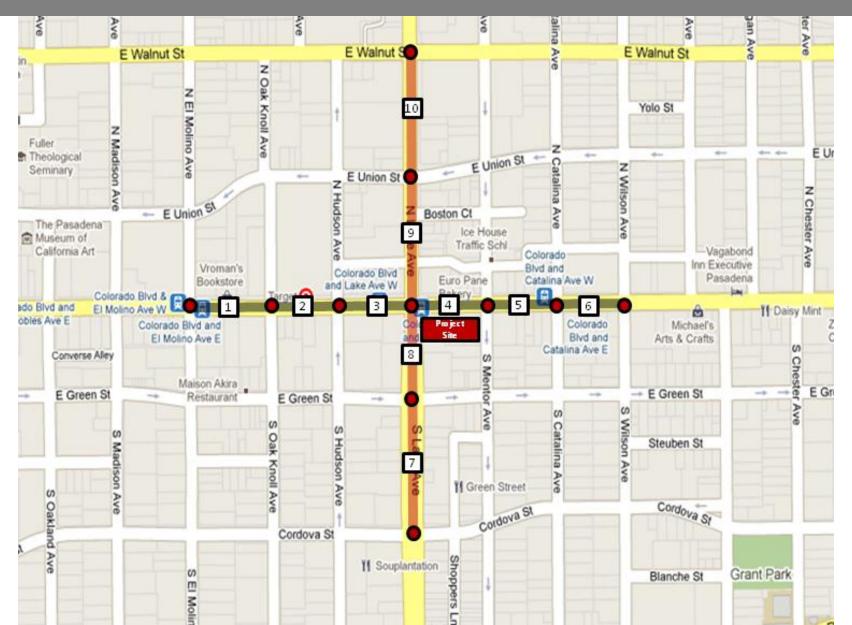
- Auto speed decreased (-)
- Pedestrian LOS improved (+)

Bicycle

- Slower auto speeds (+)
- Fewer through lanes for same volume (-)
- Exclusive bike lane (+)

Pedestrian

- More vehicles in lane nearest pedestrians (-)
- Increased space between auto and ped (+)
- Slower auto speeds (+)

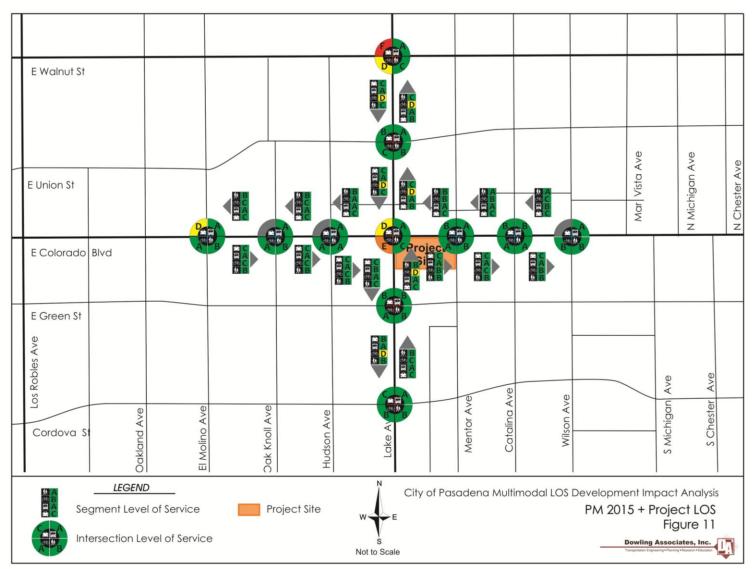

Traffic Impact and Sensitivity Case Studies

Development Impact Analysis

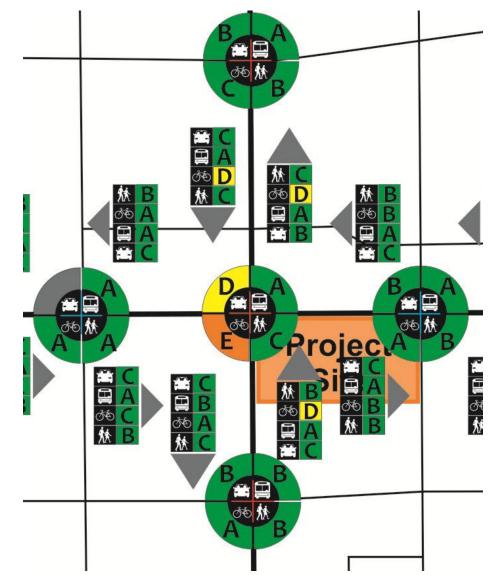
- Impact studies generally only consider auto
- Pasadena finding it difficult to mitigate certain areas
- How might MMLOS provide another tool
- A recent development project was selected to test multimodal LOS

- Project consisted of:
 - 156 room hotel
 - 38,000 ft² of dining
 - 14,000 ft² retail

- 103,000 ft² office
- 8,000 ft² of bank
- Generated 4,900 daily trips
- 289 trips in the AM peak hour
- 488 trips in the PM peak hour



Facility Level Results for Colorado Blvd.


Direction	Mode		AM Pea	k		PM Peak	1
Direction	Widde	Existing	2015	2015 + Proj	Existing	2015	2015 + Proj
	Auto	2.97 (C)	2.99 (C)	2.99 (C)	3.04 (C)	3.08 (C)	3.09 <mark>(</mark> C)
	Transit	1.29 (A)	1.32 (A)	1.32 (A)	1.36 (A)	1.43 (A)	1.44 (A)
Eastbound	Pedestrian	2.46 (B)	2.52 (B)	2.54 (B)	2.65 (B)	2.77 (C)	2.79 <mark>(</mark> C)
	Bicycle	3.39 (C)	3.42 (C)	3.42 (C)	3.47 (C)	3.50 (C)	3.51 (D)
	Overall	2.53 (B)	2.56 (B)	2.57 (B)	2.63 (B)	2.70 (B)	2.71 (B)
	Auto	3.02 (C)	3.05 (C)	3.05 (C)	3.02 (C)	3.06 (C)	3.06 (C)
	Transit	1.26 (A)	1.32 (A)	1.33 (A)	1.47 (A)	1.54 (A)	1.54 (A)
Westbound	Pedestrian	2.58 (B)	2.67 (B)	2.68 (B)	2.61 (B)	2.71 (B)	2.72 (B)
	Bicycle	3.29 (C)	3.32 (C)	3.32 (C)	3.30 (C)	3.33 (C)	3.33 <mark>(</mark> C)
	Overall	2.54 (B)	2.59 (B)	2.60 (B)	2.60 (B)	2.66 (B)	2.66 (B)

Link results for Colorado Blvd.

Colorado Boulevard - Worst Direction PM Segment LOS									
Segment	Mode	Direction	Existing	2015	2015 + Proj	Diff.	% Change		
	Auto	EB	2.88 (C)	2.90 (C)	2.91 (C)	0.01	0.3%		
	Transit	WB	1.54 (A)	1.61 (A)	1.61 (A)	0.00	0.0%		
El Molino Ave to Oak Knoll Ave	Pedestrian	EB	1.80 (A)	2.16 (B)	2.21 (B)	0.05	2.3%		
	Bicycle	EB	2.98 (C)	3.10 (C)	3.12 (C)	0.02	0.6%		
	Auto	EB	3.10 (C)	3.17 (C)	3.19 (C)	0.02	0.6%		
Oak Knoll Ave to Hudson Ave	Transit	EB	1.44 (A)	1.53 (A)	1.54 (A)	0.01	0.7%		
	Pedestrian	EB	1.83 (A)	2.19 (B)	2.24 (B)	0.05	2.3%		
	Bicycle	EB	2.68 (B)	2.80 (C)	2.81 (C)	0.01	0.4%		

HCM 2010 Overview & Multimodal Level of Service

Transit

- Minimal effect, transit speed slightly slower (-)
- Pedestrian LOS slightly worse (-)

Bicycle

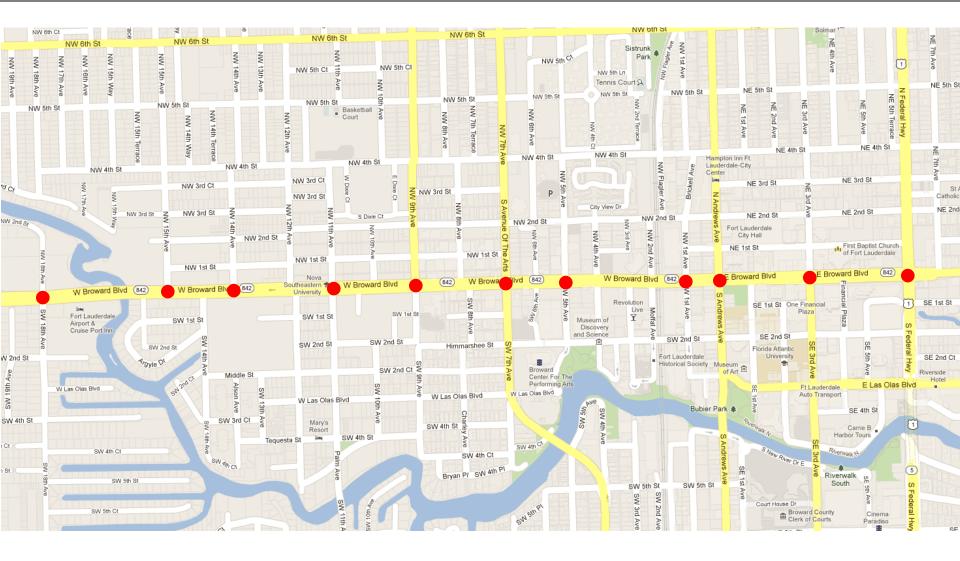
- Slower auto speeds (+)
- Increased volume (-)

Pedestrian

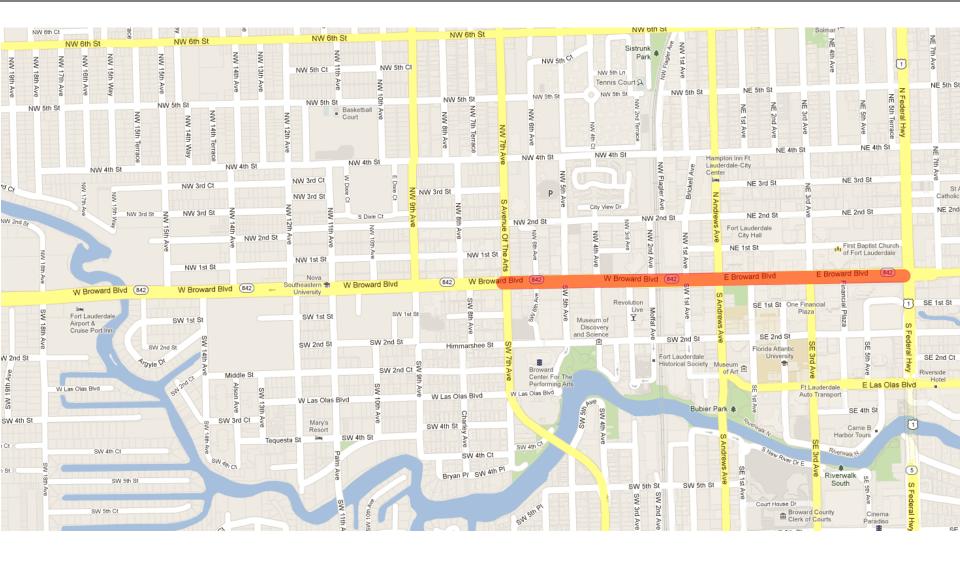
- More vehicles in lane nearest pedestrians (-)
- Slower auto speeds (+)

All impacts minor, volume has only small effect on LOS for non-auto modes

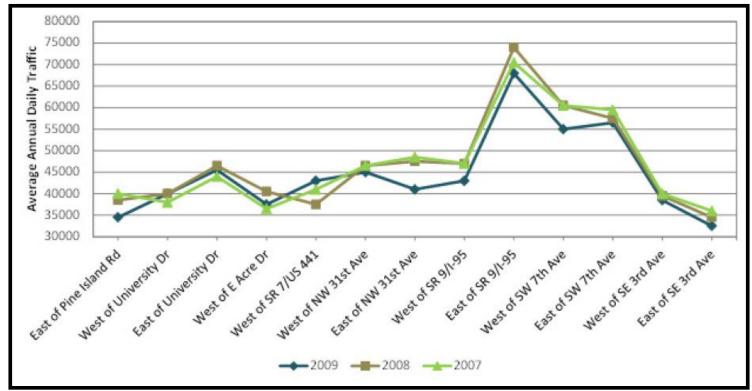
Traffic Impact and Sensitivity Case Studies <u>Conclusions</u>


Lessons Learned:

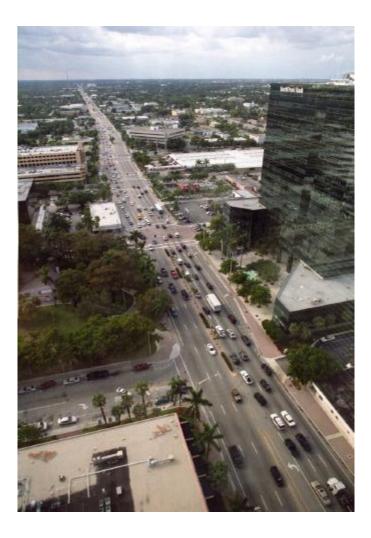
- Multimodal LOS not very sensitive to volume changes
- Methodology much better at quantitatively showing impacts to all four modes resulting from physical attributes such as:
 - Cross section changes (Pedestrians/Bikes)
 - Trees or other buffers (Pedestrians)
 - Pavement condition (Bikes)


BROWARD BOULEVARD: ROAD DIET

Analysis Corridor Analysis Intersections

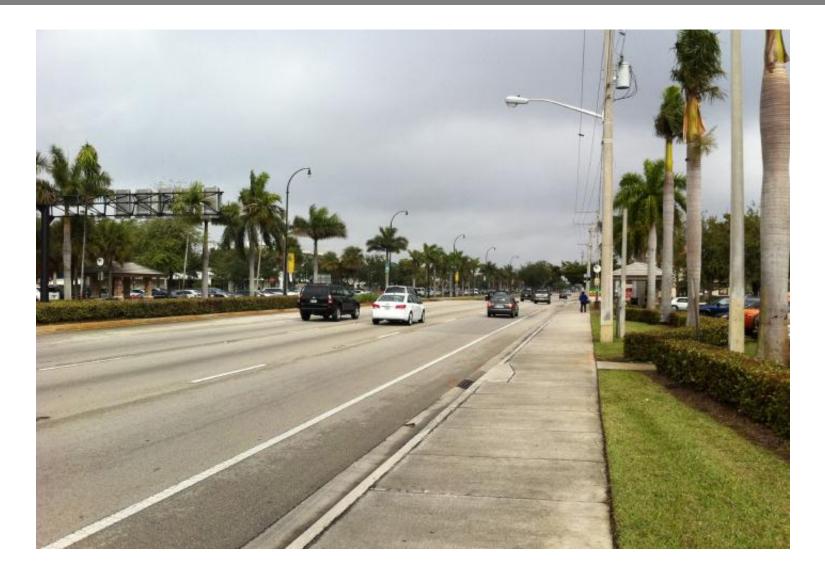


Analysis Corridor Road Diet Portion



Existing Facility

- Divided 6-Lane Facility
- Performed a MMLOS Analysis for WB Direction



Existing Facility

Existing Facility

		WB	Link LOS			
Segment	From	То	Auto	Transit	Bike	Pedestrian
1	US-1	NE 3rd	0.34 (E)	3.69 (D)	4.00 (D)	2.39 (B)
2	NE 3rd	Andrews	0.34 (E)	1.92 (A)	4.15 (D)	2.76 (C)
3	Andrews	NW 1st	0.38 (E)	1.92 (A)	3.39 (C)	2.87 (C)
4	NW 1st	NW 5th	0.39 (E)	1.77 (A)	4.35 (E)	3.50 (C)
5	NW 5th	NW 7th	0.36 (E)	2.30 (B)	4.16 (D)	3.42 (C)
6	NW 7th	NW 9th	0.65 (C)	2.22 (B)	4.44 (E)	3.90 (D)
7	NW 9th	NW 11th	0.50 (C)	1.10 (A)	4.38 (E)	3.70 (D)
8	NW 11th	NW 14th	0.73 (B)	2.22 (B)	4.51 (E)	3.98 (D)
9	NW 14th	NW 15th	0.72 (B)	3.52 (D)	3.65 (D)	3.77 (D)
10	NW 15th	NW 18th	0.56 (C)	1.99 (A)	4.55 (E)	4.19 (D)

	WB Segment LOS									
Segment	From	То	Auto	Auto Transit		Pedestrian				
1	US-1	NE 3rd	0.34 (E)	3.69 (D)	3.85 (D)	3.60 (D)				
2	NE 3rd	Andrews	0.34 (E)	1.92 (A)	3.71 (D)	3.71 (D)				
3	Andrews	NW 1st	0.38 (E)	1.92 (A)	3.67 (D)	3.63 (D)				
4	NW 1st	NW 5th	0.39 (E)	1.77 (A)	4.09 (D)	3.75 (D)				
5	NW 5th	NW 7th	0.36 (E)	2.30 (B)	4.18 (D)	3.99 (D)				
6	NW 7th	NW 9th	0.65 (C)	2.22 (B)	4.25 (D)	4.00 (D)				
7	NW 9th	NW 11th	0.50 (C)	1.10 (A)	4.06 (D)	3.92 (D)				
8	NW 11th	NW 14th	0.73 (B)	2.22 (B)	4.01 (D)	3.98 (D)				
9	NW 14th	NW 15th	0.72 (B)	3.52 (D)	3.82 (D)	4.00 (D)				
10	NW 15th	NW 18th	0.56 (C)	1.99 (A)	4.04 (D)	4.07 (D)				

- Remove through lane along corridor
- Between US-1 and NW 7th, convert 1 through lane to parking and a bike lane
- Between NW 7th and I-95, convert 1 through lane to a transit only lane and bicycle lane

SOFTWARE APPLICATION COMPLETESTREETSLOS

Auto LOS

		WB S	egment A	uto LOS		
Segment	From	То	Existing	Road Diet	% Change	LOS
1	US-1	NE 3rd	0.34	0.31	-10.3%	E >> E
2	NE 3rd	Andrews	0.34	0.23	-45.7%	E >> F
3	Andrews	NW 1st	0.38	0.34	-13.7%	E >> E
4	NW 1st	NW 5th	0.39	0.12	-227.7%	E >> F
5	NW 5th	NW 7th	0.36	0.17	-116.4%	E >> F
6	NW 7th	NW 9th	0.65	0.32	-102.5%	C >> E
7	NW 9th	NW 11th	0.50	0.13	-299.2%	C >> F
8	NW 11th	NW 14th	0.73	0.17	-332.5%	B >> F
9	NW 14th	NW 15th	0.72	0.49	-46.9%	B >> F
10	NW 15th	NW 18th	0.56	0.05	-1002.0%	C >> F

Transit LOS

		WB Seg	gment Trar	nsit LOS		
Segment	From	То	Existing	Road Diet	% Change	LOS
1	US-1	NE 3rd	3.69	3.23	-14.2%	D >> C
2	NE 3rd	Andrews	1.93	1.23	-56.9%	A >> A
3	Andrews	NW 1st	1.92	1.09	-76.1%	A >> A
4	NW 1st	NW 5th	1.77	1.15	-53.9%	A >> A
5	NW 5th	NW 7th	2.30	1.83	-25.7%	B >> A
6	NW 7th	NW 9th	2.22	2.30	3.5%	B >> B
7	NW 9th	NW 11th	1.10	1.69	34.9%	A >> A
8	NW 11th	NW 14th	2.22	2.48	10.5%	B >> B
9	NW 14th	NW 15th	3.52	3.36	-4.8%	D >> C
10	NW 15th	NW 18th	1.99	1.95	-2.1%	A >> A

Bicycle LOS

		WB Se	egment Bil	ke LOS		
Segment	From	То	Existing	Road Diet	% Change	LOS
1	US-1	NE 3rd	3.85	3.63	-6.1%	D >> D
2	NE 3rd	Andrews	3.71	3.50	-6.0%	D >> D
3	Andrews	NW 1st	3.67	3.45	-6.4%	D >> C
4	NW 1st	NW 5th	4.09	3.81	-7.3%	D >> D
5	NW 5th	NW 7th	4.18	3.88	-7.7%	D >> D
6	NW 7th	NW 9th	4.25	2.69	-58.0%	D >> B
7	NW 9th	NW 11th	4.06	2.65	-53.2%	D >> B
8	NW 11th	NW 14th	4.01	2.70	-48.5%	D >> B
9	NW 14th	NW 15th	3.82	2.48	-54.0%	D >> B
10	NW 15th	NW 18th	4.04	2.64	-53.0%	D >> B

Pedestrian LOS

WB Segment Pedestrian LOS						
Segment	From	То	Existing	Road Diet	% Change	LOS
1	US-1	NE 3rd	3.61	3.54	-2.0%	D >> D
2	NE 3rd	Andrews	3.75	3.72	-0.8%	D >> D
3	Andrews	NW 1st	3.63	3.62	-0.3%	D >> D
4	NW 1st	NW 5th	3.75	3.71	-1.1%	D >> D
5	NW 5th	NW 7th	3.99	3.99	0.0%	D >> D
6	NW 7th	NW 9th	4.00	4.12	2.9%	D >> D
7	NW 9th	NW 11th	3.92	4.02	2.5%	D >> D
8	NW 11th	NW 14th	3.77	4.46	15.5%	D >> E
9	NW 14th	NW 15th	4.00	4.26	6.1%	D >> E
10	NW 15th	NW 18th	4.07	4.33	6.0%	D >> E

Overview

- What's New for HCM 2010?
- Brief history of HCM multimodal analysis
- Development of the HCM methodology
 - Pedestrian LOS model
 - Bicycle LOS model
 - Transit LOS model
- FDOT Q/LOS versus HCM 2010
- Complete Streets and General Plan Case Studies
- Traffic Impact and Sensitivity Case Studies
- <u>Q&A</u>

HCM 2010 Course | Urban Street Concepts: Pedestrian, Bicycle, and Transit Modes

Aaron Elias Engineering Associate (510) 839-1742 aelias@kittelson.com

Kamala Parks Senior Planner (510) 839-1742 kparks@kittelson.com

